Weak Hölder continuity of Lyapunov exponent for Gevrey quasi-periodic Schrödinger cocycles
Licheng Fang
Yantai University, Yantai, P. R. ChinaFengpeng Wang
Sun Yat-Sen University, Zhuhai, P. R. China

Abstract
We prove the large deviation theorem (LDT) for quasi-periodic dynamically defined Gevrey Schrödinger cocycles with weak Liouville frequency. We show that the associated Lyapunov exponent is log-Hölder continuous, while the frequency satisfies .
Cite this article
Licheng Fang, Fengpeng Wang, Weak Hölder continuity of Lyapunov exponent for Gevrey quasi-periodic Schrödinger cocycles. J. Spectr. Theory 14 (2024), no. 4, pp. 1647–1660
DOI 10.4171/JST/527