On weak and strong solution operators for evolution equations coming from quadratic operators
Alexandru Aleman
Lund University, SwedenJoe Viola
Université de Nantes, France
Abstract
We identify, through a change of variables, solution operators for evolution equations with generators given by certain simple first-order differential operators acting on Fock spaces. This analysis applies, through unitary equivalence, to a broad class of supersymmetric quadratic multiplication-differentiation operators acting on which includes the elliptic and weakly elliptic quadratic operators. We demonstrate a variety of sharp results on boundedness, decay, and return to equilibrium for these solution operators, connecting the short-time behaviorwith the range of the symbol and the long-time behavior with the eigenvalues of their generators. This is particularly striking when it allows for the definition of solution operators which are compact and regularizing for large times for certain operators whose spectrum is the entire complex plane.
Cite this article
Alexandru Aleman, Joe Viola, On weak and strong solution operators for evolution equations coming from quadratic operators. J. Spectr. Theory 8 (2018), no. 1, pp. 33–121
DOI 10.4171/JST/191