Semiclassical Gevrey operators and magnetic translations
Michael Hitrik
University of California at Los Angeles, USARichard Lascar
Université Côte d’Azur, Nice, FranceJohannes Sjöstrand
Université de Bourgogne 9, Dijon, FranceMaher Zerzeri
Université Sorbonne Paris-Nord, Villetaneuse, France
Abstract
We study semiclassical Gevrey pseudodifferential operators acting on the Bargmann space of entire functions with quadratic exponential weights. Using some ideas from time frequency analysis, we show that such operators are uniformly bounded on a natural scale of exponentially weighted spaces of holomorphic functions, provided that the Gevrey index is greater than or equal to 2.
Cite this article
Michael Hitrik, Richard Lascar, Johannes Sjöstrand, Maher Zerzeri, Semiclassical Gevrey operators and magnetic translations. J. Spectr. Theory 12 (2022), no. 1, pp. 53–82
DOI 10.4171/JST/394