Euler constants for the ring of -integers of a function field

  • Mireille Car

    Université Aix-Marseille III, France

Abstract

The Euler constant may be defined as the limit for tending to , of the difference . Alternatively, it may be defined as the limit at 1 of the difference , being a complex number in the half-plane . Mertens theorem states that for real number tending to +, , the product being over prime numbers . We prove analog results for the ring of -integers of a function field. However, in the function field case, the three approaches lead to different constants.

Cite this article

Mireille Car, Euler constants for the ring of -integers of a function field. Port. Math. 64 (2007), no. 2, pp. 127–142

DOI 10.4171/PM/1779