-induction for bi-unitary connections

  • Yasuyuki Kawahigashi

    The University of Tokyo, Tokyo, Japan
$\alpha$-induction for bi-unitary connections cover
Download PDF

This article is published open access under our Subscribe to Open model.

Abstract

The tensor functor called -induction produces a new unitary fusion category from a Frobenius algebra object, or a -system, in a braided unitary fusion category. In the operator algebraic language, it gives extensions of endomorphism of to arising from a subfactor of finite index and finite depth, which gives a braided fusion category of endomorphisms of . It is also understood in terms of Ocneanu’s graphical calculus. We study this -induction for bi-unitary connections, which provides a characterization of finite-dimensional nondegenerate commuting squares, and present certain -tensors appearing in recent studies of -dimensional topological order. We show that the resulting -induced bi-unitary connections are flat if we start with a commutative Frobenius algebra, or a local -system. Examples related to chiral conformal field theory and the Dynkin diagrams are presented.

Cite this article

Yasuyuki Kawahigashi, -induction for bi-unitary connections. Quantum Topol. 15 (2024), no. 3/4, pp. 503–536

DOI 10.4171/QT/209