Knot polynomial identities and quantum group coincidences
Scott Morrison
UC Berkeley, USAEmily Peters
University of New Hampshire, Durham, USANoah Snyder
Columbia University, New York, USA
Abstract
We construct link invariants using the subfactor planar algebras, and use these to prove new identities relating certain specializations of colored Jones polynomials to specializations of other quantum knot polynomials. These identities can also be explained by coincidences between small modular categories involving the even parts of the planar algebras. We discuss the origins of these coincidences, explaining the role of SO level-rank duality, Kirby–Melvin symmetry, and properties of small Dynkin diagrams. One of these coincidences involves and does not appear to be related to level-rank duality.
Cite this article
Scott Morrison, Emily Peters, Noah Snyder, Knot polynomial identities and quantum group coincidences. Quantum Topol. 2 (2011), no. 2, pp. 101–156
DOI 10.4171/QT/16