Exponential and sub-exponential stability times for the NLS on the circle
Luca Biasco
Università degli Studi Roma Tre, ItalyJessica Elisa Massetti
Scuola Normale Superiore, Pisa, ItalyMichela Procesi
Università degli Studi Roma Tre, Italy
Abstract
In this note we study stability times for a family of parameter dependent nonlinear Schrödinger equations on the circle, close to the origin. Imposing a suitable Diophantine condition (first introduced by Bourgain), we state a rather flexible Birkho¤ Normal Form theorem, which implies, e.g., exponential and sub-exponential time estimates in the Sobolev and Gevrey class respectively. Complete proofs are given elsewhere (see [BMP18]).
Cite this article
Luca Biasco, Jessica Elisa Massetti, Michela Procesi, Exponential and sub-exponential stability times for the NLS on the circle. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 30 (2019), no. 2, pp. 351–364
DOI 10.4171/RLM/850