Global Lipschitz extension preserving local constants
Simone Di Marino
Università di Genova, ItalyNicola Gigli
SISSA, Trieste, ItalyAldo Pratelli
Università di Pisa, Italy
Abstract
The intent of this short note is to extend real valued Lipschitz functions on metric spaces, while locally preserving the asymptotic Lipschitz constant. We then apply this results to give a simple and direct proof of the fact that Sobolev spaces on metric measure spaces defined with a relaxation approach à la Cheeger are invariant under isomorphism class of mm-structures.
Cite this article
Simone Di Marino, Nicola Gigli, Aldo Pratelli, Global Lipschitz extension preserving local constants. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 31 (2020), no. 4, pp. 757–765
DOI 10.4171/RLM/913