Optimization Stories
21st International Symposium on Mathematical Programming. Berlin, Germany, 19–24 August 2012
Editors
Martin Grötschel
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Berlin, Germany
p. 460 Contentspp. 1–2 DOI 10.4171/DMS/6/1Prefacepp. 3–5 IntroductionMartin Grötschel
DOI 10.4171/DMS/6/2pp. 7–8 Stories about the old masters of optimizationMartin Grötschel
DOI 10.4171/DMS/6/3pp. 9–14 Jiu Zhang Suan Shu and the Gauss algorithm for linear equationsYa-Xiang Yuan
DOI 10.4171/DMS/6/4pp. 15–18 Leibniz and the brachistochroneEberhard Knobloch
DOI 10.4171/DMS/6/5pp. 19–23 Leibniz and the infiniteEberhard Knobloch
DOI 10.4171/DMS/6/6pp. 25–30 A short history of Newton's methodPeter Deuflhard
DOI 10.4171/DMS/6/7pp. 31–35 Euler and infinite speedEberhard Knobloch
DOI 10.4171/DMS/6/8pp. 37–42 Euler and variationsEberhard Knobloch
DOI 10.4171/DMS/6/9pp. 43–50 Euler, Mei-ko Kwan, Königsberg, and a Chinese postmanMartin GrötschelYa-Xiang Yuan
DOI 10.4171/DMS/6/10pp. 55–64 Who invented the interior-point method?David Shanno
DOI 10.4171/DMS/6/11pp. 65–73 Column generation for linear and integer programmingGeorge L. Nemhauser
DOI 10.4171/DMS/6/12pp. 75–85 Who solved the Hirsch conjecture?Günter M. Ziegler
DOI 10.4171/DMS/6/13pp. 87–93 Pope Gregory, the calendar, and continued fractionsFriedrich Eisenbrand
DOI 10.4171/DMS/6/14pp. 95–106 Löwner–John ellipsoidsMartin Henk
DOI 10.4171/DMS/6/15pp. 107–121 A brief history of linear and mixed-integer programming computationRobert E. Bixby
DOI 10.4171/DMS/6/16pp. 127–141 The origins of minimal spanning tree algorithms – Borůvka and JarníkJaroslav NesetrilHelena Nesetrilová
DOI 10.4171/DMS/6/17pp. 143–153 The coming of the matroidsWilliam H. Cunningham
DOI 10.4171/DMS/6/18pp. 155–167 On the history of the shortest path problemAlexander Schrijver
DOI 10.4171/DMS/6/19pp. 169–180 On the history of the transportation and maximum flow problemsAlexander Schrijver
DOI 10.4171/DMS/6/20pp. 181–197 Edmonds, matching and the birth of polyhedral combinatoricsWilliam R. Pulleyblank
DOI 10.4171/DMS/6/21pp. 199–210 Flinders Petrie, the travelling salesman problem, and the beginning of mathematical modeling in archaeologyThomas L. GertzenMartin Grötschel
DOI 10.4171/DMS/6/22pp. 211–219 D. Ray Fulkerson and project schedulingRolf H. Möhring
DOI 10.4171/DMS/6/23pp. 221–226 The ongoing story of Gomory cutsGérard Cornuéjols
DOI 10.4171/DMS/6/24pp. 227–238 Markowitz and Manne + Eastman + Land and Doig = branch and boundWilliam Cook
DOI 10.4171/DMS/6/25pp. 239–245 Ronald Graham: laying the foundations of online optimizationSusanne Albers
DOI 10.4171/DMS/6/26pp. 251–254 Cauchy and the gradient methodClaude Lemaréchal
DOI 10.4171/DMS/6/27pp. 255–269 William Karush and the KKT theoremRichard W. Cottle
DOI 10.4171/DMS/6/28pp. 271–276 Nelder, Mead, and the other simplex methodMargaret H. Wright
DOI 10.4171/DMS/6/29pp. 277–290 Subgradient optimization in nonsmooth optimization (including the soviet revolution)Jean-Louis Goffin
DOI 10.4171/DMS/6/30pp. 291–300 A science fiction story in nonsmooth optimization originating at IIASARobert MifflinClaudia Sagastizábal
DOI 10.4171/DMS/6/31pp. 301–315 Broyden updating, the good and the bad!Andreas Griewank
DOI 10.4171/DMS/6/32pp. 317–329 Carathéodory on the road to the maximum principleHans Josef Pesch
DOI 10.4171/DMS/6/33pp. 331–343 The cold war and the maximum principle of optimal controlHans Josef PeschMichael Plail
DOI 10.4171/DMS/6/34pp. 345–356 The princess and infinite-dimensional optimizationHans Josef Pesch
DOI 10.4171/DMS/6/35pp. 359–376 A brief history of NP-completeness, 1954–2012David S. Johnson
DOI 10.4171/DMS/6/36pp. 377–388 On the evolution of optimization modeling systemsRobert Fourer
DOI 10.4171/DMS/6/37pp. 389–400 Who invented the reverse mode of differentiation?Andreas Griewank
DOI 10.4171/DMS/6/38pp. 401–415 Gordon Moore and his law: numerical methods to the rescueRaúl Rojas
DOI 10.4171/DMS/6/39pp. 419–431 Voronoi diagrams and Delaunay triangulations: ubiquitous siamese twinsThomas M. LieblingLionel Pournin
DOI 10.4171/DMS/6/40pp. 433–438 Around Hilbert’s 17th problemKonrad Schmüdgen
DOI 10.4171/DMS/6/41pp. 439–446 From Kepler to Hales, and back to HilbertMichael Joswig
DOI 10.4171/DMS/6/42pp. 447–453 Vilfredo Pareto and multi-objective optimizationMatthias Ehrgott
DOI 10.4171/DMS/6/43pp. 455–460 Optimisation and utility functionsWalter Schachermayer
DOI 10.4171/DMS/6/44