The Cauchy Problem in General Relativity
Hans Ringström
KTH Mathematics, Stockholm, Sweden
A subscription is required to access this book.
FrontmatterDownload pp. i–v | |
PrefaceDownload p. vii | |
ContentsDownload pp. ix–xiii | |
1 | IntroductionDownload pp. 1–5 |
2 | Outlinepp. 6–18 |
I | Part I Background from the theory of partial differential equationsp. 19 |
3 | Functional analysispp. 21–25 |
4 | The Fourier transformpp. 26–32 |
5 | Sobolev spacespp. 33–44 |
6 | Sobolev embeddingpp. 45–56 |
7 | Symmetric hyperbolic systemspp. 57–68 |
8 | Linear wave equationspp. 69–75 |
9 | Local existence, non-linear wave equationspp. 76–91 |
II | Part II Background in geometry, global hyperbolicity and uniquenessp. 93 |
10 | Basic Lorentz geometrypp. 95–110 |
11 | Characterizations of global hyperbolicitypp. 111–130 |
12 | Uniqueness of solutions to linear wave equationspp. 131–144 |
III | Part III General relativityp. 145 |
13 | The constraint equationspp. 147–151 |
14 | Local existencepp. 152–163 |
15 | Cauchy stabilitypp. 164–175 |
16 | Existence of a maximal globally hyperbolic developmentpp. 176–183 |
IV | Part IV Pathologies, strong cosmic censorshipp. 185 |
17 | Preliminariespp. 187–195 |
18 | Constant mean curvaturepp. 196–205 |
19 | Initial datapp. 206–212 |
20 | Einstein’s vacuum equationspp. 213–224 |
21 | Closed universe recollapsepp. 225–231 |
22 | Asymptotic behaviourpp. 232–242 |
23 | LRS Bianchi class A solutionspp. 243–251 |
24 | Existence of extensionspp. 252–259 |
25 | Existence of inequivalent extensionspp. 260–264 |
V | Part V Appendicesp. 265 |
A | Appendix App. 267–276 |
B | Appendix Bpp. 277–284 |
Bibliographypp. 285–289 | |
Indexpp. 291–294 |