The Lie Theory of Connected Pro-Lie Groups

A Structure Theory for Pro-Lie Algebras, Pro-Lie Groups, and Connected Locally Compact Groups

  • Karl H. Hofmann

    TU Darmstadt, Germany
  • Sidney A. Morris

    University of Ballarat, Australia
The Lie Theory of Connected Pro-Lie Groups cover

A subscription is required to access this book.

FrontmatterDownload pp. i–iv
PrefaceDownload pp. v–ix
ContentsDownload pp. xi–xv
Panoramic OverviewDownload pp. 1–62
1Limits of Topological Groupspp. 63–106
2Lie Groups and the Lie Theory of Topological Groupspp. 107–134
3Pro-Lie Groupspp. 135–167
4Quotients of Pro-Lie Groupspp. 168–211
5Abelian Pro-Lie Groupspp. 212–248
6Lie’s Third Fundamental Theorempp. 249–268
7Profinite-Dimensional Modules and Lie Algebraspp. 269–334
8The Structure of Simply Connected Pro-Lie Groupspp. 335–355
9Analytic Subgroups and the Lie Theory of Pro-Lie Groupspp. 356–418
10The Global Structure of Connected Pro-Lie Groupspp. 419–460
11Splitting Theorems for Pro-Lie Groupspp. 461–492
12Procompact Subalgebras of Pro-Lie Algebras and Compact Subgroups of Pro-Lie Groupspp. 493–565
13Iwasawa’s Local Splitting Theorempp. 566–586
14Catalog of Examplespp. 587–623
1The Campbell–Hausdorff Formalismpp. 624–628
2Weakly Complete Topological Vector Spacespp. 629–650
3Various Pieces of Information on Semisimple Lie Algebraspp. 651–655
Bibliographypp. 657–666
List of Symbolspp. 667–668
Indexpp. 669–678

Supplementary Material