Geometrisation of 3-Manifolds
Laurent Bessières
Université Joseph Fourier, Grenoble, FranceGérard Besson
Université Joseph Fourier, Grenoble, FranceMichel Boileau
Université Paul Sabatier, Toulouse, FranceSylvain Maillot
Université Montpellier II, FranceJoan Porti
Universitat Autònoma de Barcelona, Spain
A subscription is required to access this book.
FrontmatterDownload pp. i–iv | |
PrefaceDownload pp. v–vi | |
ContentsDownload pp. vii–x | |
1 | The Geometrisation Conjecturepp. 1–22 |
Part I Ricci flow with bubbling-off: definitions and statementsp. 23 | |
2 | Basic definitionspp. 25–30 |
3 | Piecing together necks and capspp. 31–36 |
4 | -noncollapsing, canonical geometry and pinchingpp. 37–45 |
5 | Ricci flow with -bubbling-offpp. 46–56 |
Part II Ricci flow with bubbling-off: existencepp. 57–58 | |
6 | Choosing cutoff parameterspp. 59–74 |
7 | Metric surgery and proof of Proposition App. 75–87 |
8 | Persistencepp. 88–96 |
9 | Canonical neighbourhoods and the proof of Proposition Bpp. 97–107 |
10 | -noncollapsing and the proof of Proposition Cpp. 108–129 |
Part III Long-time behaviour of Ricci flow with bubbling-offpp. 131–132 | |
11 | The thin-thick decomposition theorempp. 133–145 |
12 | Refined estimates for long-time behaviourpp. 146–175 |
Part IV Weak collapsing and hyperbolisationpp. 177–178 | |
13 | Collapsing, simplicial volume and strategy of proofpp. 179–187 |
14 | Proof of the weak collapsing theorempp. 188–206 |
15 | A rough classification of 3-manifoldspp. 207–208 |
A | 3-manifold topologypp. 209–212 |
B | Comparison geometrypp. 213–216 |
C | Ricci flowpp. 217–220 |
D | Alexandrov spacesp. 221 |
E | A sufficient condition for hyperbolicitypp. 222–223 |
Bibliographypp. 225–233 | |
Indexpp. 235–237 |