Fukaya Categories and Picard–Lefschetz Theory
Paul Seidel
Massachusetts Institute of Technology, Cambridge, USA
A subscription is required to access this book.
FrontmatterDownload pp. i–iv | |
PrefaceDownload pp. v–vi | |
ContentsDownload p. vii | |
IntroductionDownload pp. 1–6 | |
I | -categoriesp. 7 |
1 | Definitionspp. 8–22 |
2 | Identity morphisms and equivalencespp. 22–32 |
3 | Exact trianglespp. 32–55 |
4 | Idempotentspp. 55–62 |
5 | Twistingpp. 62–87 |
6 | -actionspp. 87–93 |
II | Fukaya categoriesp. 95 |
7 | A little symplectic geometrypp. 96–100 |
8 | Classical Floer theorypp. 100–112 |
9 | The Fukaya category (preliminary version)pp. 113–133 |
10 | Some basic propertiespp. 133–149 |
11 | Indices and determinant linespp. 149–174 |
12 | The Fukaya category (complete version)pp. 174–190 |
13 | Polygons on surfacespp. 190–198 |
14 | Symplectic involutionspp. 198–210 |
III | Picard–Lefschetz theorypp. 211–212 |
15 | First notionspp. 212–220 |
16 | Vanishing cycles and matching cyclespp. 220–235 |
17 | Pseudo-holomorphic sectionspp. 235–265 |
18 | The Fukaya category of a Lefschetz fibrationpp. 265–291 |
19 | Algebraic varietiespp. 291–304 |
20 | type Milnor fibrespp. 304–314 |
Bibliographypp. 315–322 | |
Symbolspp. 323–324 | |
Indexpp. 325–326 |