Geometric applications of irreducible representations of Lie groups
- Antonio J. Di ScalaPolitecnico di Torino, Italy
- Thomas LeistnerThe University of Adelaide, Australia
- Thomas NeukirchnerHumboldt-Universität zu Berlin, Germany

Download Chapter PDF
A subscription is required to access this book chapter.
Abstract
In this note we give proofs of the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup G ⊂ GL(n,ℝ) is closed. Moreover, if G admits an invariant bilinear form of Lorentzian signature, G is maximal, i.e. it is conjugated to SO(1,n − 1)0. We calculate the vector space of G-invariant symmetric bilinear forms, show that it is at most 3-dimensional, and determine the maximal stabilizers for each dimension. Finally, we give some applications and present some open problems.