Volume 27, No. 2 (2010)
Annales de l'Institut Henri Poincaré C

- Editorial Board
pp. 447–469 A relaxation process for bifunctionals of displacement-Young measure state variables: A model of multi-material with micro-structured strong interfaceFrançoise KrasuckiGérard MichailleAnne Laure Bessoud
pp. 471–501 Regularity of solutions for the critical N-dimensional Burgers' equationChi Hin ChanMagdalena Czubak
pp. 503–515 A remark on gauge transformations and the moving frame methodArmin Schikorra
pp. 517–528 Invertibility of Sobolev mappings under minimal hypothesesKai RajalaLeonid V. KovalevJani Onninen
pp. 529–553 Multiple solutions for a class of elliptic equations with jumping nonlinearitiesRiccardo MolleDonato Passaseo
pp. 555–593 Existence, uniqueness and stability of equilibrium states for non-uniformly expanding mapsPaulo VarandasMarcelo Viana
pp. 595–637 Statistical stability for Hénon maps of the Benedicks–Carleson typeJosé F. AlvesMaria CarvalhoJorge Milhazes Freitas
pp. 639–654 Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusionK. FellnerJ.A. CañizoL. Desvillettes
pp. 655–691 Phase transitions with a minimal number of jumps in the singular limits of higher order theoriesP.I. PlotnikovJ.F. Toland
pp. 693–704 Eventual regularization for the slightly supercritical quasi-geostrophic equationLuis Silvestre
pp. 705–718 Extension d'une classe d'unicité pour les équations de Navier–StokesRamzi May
pp. 719–737 Convergence to self-similarity for the Boltzmann equation for strongly inelastic Maxwell moleculesE. TerraneoG. ToscaniG. FurioliA. Pulvirenti
pp. 739–761 Some new results in competing systems with many speciesKelei WangZhitao Zhang
pp. 763–771 Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zerosEugenio MassaSebastián LorcaLeonelo Iturriaga
pp. 773–778 A regularity criterion for the 3D NSE in a local version of the space of functions of bounded mean oscillationsZoran GrujićRafaela Guberović
pp. 779–791 On the Schrödinger–Maxwell equations under the effect of a general nonlinear termA. PomponioA. AzzolliniP. d'Avenia