Special triple covers of algebraic surfaces
Nicolina Istrati
FB 12/Mathematik und Informatik, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, GermanyPiotr Pokora
Department of Mathematics, Pedagogical University of Krakow, Podchorążych 2, PL-30-084 Kraków, PolandSönke Rollenske
FB 12/Mathematik und Informatik, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
Abstract
We study special triple covers of algebraic surfaces, where the Tschirnhausen bundle is a quotient of a split rank three vector bundle, and we provide several necessary and sufficient criteria for the existence. As an application, we give a complete classification of special triple planes, finding among others two nice families of K3 surfaces.
Cite this article
Nicolina Istrati, Piotr Pokora, Sönke Rollenske, Special triple covers of algebraic surfaces. Doc. Math. 27 (2022), pp. 2301–2332
DOI 10.4171/DM/X30