The Hochschild cohomology of the algebra of differential operators tangent to a central arrangement of lines

  • Francisco Kordon

    Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, (1428) Ciudad de Buenos Aires, Argentina
  • Mariano Suárez-Álvarez

    Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, (1428) Ciudad de Buenos Aires, Argentina
The Hochschild cohomology of the algebra of differential operators tangent to a central arrangement of lines cover
Download PDF

This article is published open access.

Abstract

Given a central arrangement of lines A\mathcal{A} in a 22-dimensional vector space VV over a field of characteristic zero, we study the algebra D(A)\mathscr{D}(\mathcal{A}) of differential operators on VV which are logarithmic along A\mathcal{A}. Among other things we determine the Hochschild cohomology of D(A)\mathscr{D}(\mathcal{A}) as a Gerstenhaber algebra, establish a connection between that cohomology and the de Rham cohomology of the complement M(A)M(\mathcal{A}) of the arrangement, determine the isomorphism group of D(A)\mathscr{D}(\mathcal{A}) and classify the algebras of that form up to isomorphism.

Cite this article

Francisco Kordon, Mariano Suárez-Álvarez, The Hochschild cohomology of the algebra of differential operators tangent to a central arrangement of lines. Doc. Math. 27 (2022), pp. 869–916

DOI 10.4171/DM/887