JournalszaaVol. 11, No. 1Volume 11, No. 1 (1992) Zeitschrift für Analysis und ihre Anwendungenpp. 3–23On the Volume Infimum for Liquid BridgesRobert FinnT. Vogelpp. 25–35On Massless Fields with Arbitrary SpinReinhard Illgepp. 37–41On a Generalization of the Spaces of Quasi-Constant CurvatureSheng Jiangpp. 43–55A Remark on Interpolation with Generalized ParametersJoachim Puhlpp. 57–76Some Results on the Invertibility of Wiener-Hopf-Hankel OperatorsA.B. LebreE. MeisterF.S. Teixeirapp. 77–84Singular Integral Equations with Monotone Nonlinearity in Complex Lebesgue SpacesSultan N. Askhabovpp. 85–92Some Classes of Nonlinear Mixed Volterra and Singular Integral EquationsLothar von Wolfersdorfpp. 93–105On Certain Singular Ordinary Differential Equations of the First Order in Banach SpacesHenryk Ugowskipp. 107–116Convergent Solutions of Ordinary and Functional-Differential Pendulum-Like EquationsG.A. LeonovVolker Reitmannpp. 117–124On a Nonlinear Binomial Equation of Third OrderM. Gregušpp. 125–134On the Optimal ConvergenceMirjana Stojanovićpp. 135–141An Explicit Representation of the Remainder of some Newton-Cotes Formulas in Terms of Higher Order DifferencesBernhard BüttgenbachGerald LüttgensRolf Joachim Nesselpp. 143–151The SILP-Relaxation Method in Optimal Control I: General Boundary ConditionsHelmut Rudolph
pp. 57–76Some Results on the Invertibility of Wiener-Hopf-Hankel OperatorsA.B. LebreE. MeisterF.S. Teixeira
pp. 77–84Singular Integral Equations with Monotone Nonlinearity in Complex Lebesgue SpacesSultan N. Askhabov
pp. 85–92Some Classes of Nonlinear Mixed Volterra and Singular Integral EquationsLothar von Wolfersdorf
pp. 93–105On Certain Singular Ordinary Differential Equations of the First Order in Banach SpacesHenryk Ugowski
pp. 107–116Convergent Solutions of Ordinary and Functional-Differential Pendulum-Like EquationsG.A. LeonovVolker Reitmann
pp. 135–141An Explicit Representation of the Remainder of some Newton-Cotes Formulas in Terms of Higher Order DifferencesBernhard BüttgenbachGerald LüttgensRolf Joachim Nessel
pp. 143–151The SILP-Relaxation Method in Optimal Control I: General Boundary ConditionsHelmut Rudolph