An Introduction to Kac–Moody Groups over Fields
Timothée Marquis
Université Catholique de Louvain, Louvain-la-Neuve, Belgium
A subscription is required to access this book.
FrontmatterDownload pp. i–v | |
PrefaceDownload pp. vii–viii | |
ContentsDownload pp. ix–xi | |
IntroductionDownload pp. 1–11 | |
Part I A few words on the classical Lie theoryp. 13 | |
1 | From Lie groups to Lie algebraspp. 15–17 |
2 | Finite-dimensional (real or complex) Lie algebraspp. 19–34 |
Part II Kac–Moody algebrasp. 35 | |
3 | Basic definitionspp. 37–55 |
4 | TheWeyl group of a Kac–Moody algebrapp. 57–74 |
5 | Kac–Moody algebras of finite and affine typepp. 75–88 |
6 | Real and imaginary rootspp. 89–96 |
Part III Kac–Moody groupsp. 97 | |
PrologueDownload p. 99 | |
7 | Minimal Kac–Moody groupspp. 101–171 |
8 | Maximal Kac–Moody groupspp. 173–268 |
9 | Loose endspp. 269–276 |
A | Group schemespp. 277–287 |
B | Buildings and BN-pairspp. 289–314 |
Bibliographypp. 315–320 | |
Indexpp. 321–323 | |
Index of symbolspp. 325–331 |