Degenerate Complex Monge–Ampère Equations
Vincent Guedj
Université Paul Sabatier, Toulouse, FranceAhmed Zeriahi
Université Paul Sabatier, Toulouse, France
A subscription is required to access this book.
FrontmatterDownload pp. i–iv | |
IntroductionDownload pp. v–xv | |
ContentsDownload pp. xvii–xxiv | |
Part I The local theorypp. 1–2 | |
1 | Plurisubharmonic functionspp. 3–37 |
2 | Positive currentspp. 39–74 |
3 | The complex Monge–Ampère operatorpp. 75–100 |
4 | The Monge–Ampère capacitypp. 101–129 |
5 | The Dirichlet problempp. 131–160 |
6 | Viscosity solutionspp. 161–187 |
Part II Pluripotential theory on compact manifoldsp. 189 | |
7 | Compact Kähler manifoldspp. 191–214 |
8 | Quasi-plurisubharmonic functionspp. 215–234 |
9 | Envelopes and capacitiespp. 235–255 |
10 | Finite energy classespp. 257–285 |
Part III Solving complex Monge–Ampère equationsp. 287 | |
11 | The variational approachpp. 289–314 |
12 | Uniform a priori estimatespp. 315–342 |
13 | The viscosity approachpp. 343–361 |
14 | Smooth solutionspp. 363–386 |
Part IV Singular Kähler–Einstein metricsp. 387 | |
15 | Canonical metricspp. 389–417 |
16 | Singularities and the Minimal Model Programpp. 419–450 |
17 | Bibliographypp. 451–467 |
Indexpp. 469–472 |