Degenerate Complex Monge–Ampère Equations
Vincent Guedj
Université Paul Sabatier, Toulouse, FranceAhmed Zeriahi
Université Paul Sabatier, Toulouse, France

A subscription is required to access this book.
| FrontmatterDownload pp. i–iv | |
| IntroductionDownload pp. v–xv | |
| ContentsDownload pp. xvii–xxiv | |
| Part I The local theorypp. 1–2 | |
| 1 | Plurisubharmonic functionspp. 3–37 |
| 2 | Positive currentspp. 39–74 |
| 3 | The complex Monge–Ampère operatorpp. 75–100 |
| 4 | The Monge–Ampère capacitypp. 101–129 |
| 5 | The Dirichlet problempp. 131–160 |
| 6 | Viscosity solutionspp. 161–187 |
| Part II Pluripotential theory on compact manifoldsp. 189 | |
| 7 | Compact Kähler manifoldspp. 191–214 |
| 8 | Quasi-plurisubharmonic functionspp. 215–234 |
| 9 | Envelopes and capacitiespp. 235–255 |
| 10 | Finite energy classespp. 257–285 |
| Part III Solving complex Monge–Ampère equationsp. 287 | |
| 11 | The variational approachpp. 289–314 |
| 12 | Uniform a priori estimatespp. 315–342 |
| 13 | The viscosity approachpp. 343–361 |
| 14 | Smooth solutionspp. 363–386 |
| Part IV Singular Kähler–Einstein metricsp. 387 | |
| 15 | Canonical metricspp. 389–417 |
| 16 | Singularities and the Minimal Model Programpp. 419–450 |
| 17 | Bibliographypp. 451–467 |
| Indexpp. 469–472 |