• Contact
  • Submissions
  • About
  • Updates
  • Journals
  • Books
  • Subscribe To Open
    • Authors
    • Libraries
    • Booksellers
JournalsaihpcVol. 25, No. 1

Volume 25, No. 1 (2008)

Annales de l'Institut Henri Poincaré C

Ann. Inst. H. Poincaré Anal. Non Linéaire cover

  • Editorial Board

  • pp. 1–41

    On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials

    Thomas DuyckaertsXu ZhangEnrique Zuazua

  • pp. 43–75

    Qualitative properties of a continuum theory for thin films

    Bernd Schmidt

  • pp. 77–103

    Energies of S2 S^{2} S2-valued harmonic maps on polyhedra with tangent boundary conditions

    A. MajumdarJ.M. RobbinsM. Zyskin

  • pp. 105–119

    Monotonicity properties for ground states of the scalar field equation

    Patricio L. FelmerAlexander QuaasMoxun TangJianshe Yu

  • pp. 121–133

    Semi-strong convergence of sequences satisfying a variational inequality

    Marc BrianeGabriel MokobodzkiFrançois Murat

  • pp. 135–148

    Relaxation theorems in nonlinear elasticity

    Omar Anza HafsaJean-Philippe Mandallena

  • pp. 149–161

    Solitary waves for some nonlinear Schrödinger systems

    Djairo G. de FigueiredoOrlando Lopes

  • pp. 163–171

    An explicit solution to a system of implicit differential equations

    Bernard DacorognaPaolo MarcelliniEmanuele Paolini

  • pp. 173–179

    Finite Morse index solutions of exponential problems

    E.N. Dancer

  • pp. 181–200

    Solutions of an elliptic system with a nearly critical exponent

    I.A. Guerra

  • pp. 201–213

    Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity

    Jeyabal SivaloganathanScott J. Spector

Publication Date

February 2008

Identifiers

ISSN print
0294-1449
ISSN digital
1873-1430
  • Contact
  • Legal Notice
  • Privacy Policy
  • Accessibility Statement

© 2023 EMS Press
EMS Press is an imprint of the European Mathematical Society - EMS - Publishing House GmbH,
a subsidiary of the European Mathematical Society.